\(\int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\) [484]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 137 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {4 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{a^{5/2} d}-\frac {2 \cos ^5(c+d x)}{5 d (a+a \sin (c+d x))^{5/2}}-\frac {2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}-\frac {4 \cos (c+d x)}{a^2 d \sqrt {a+a \sin (c+d x)}} \]

[Out]

-2/5*cos(d*x+c)^5/d/(a+a*sin(d*x+c))^(5/2)-2/3*cos(d*x+c)^3/a/d/(a+a*sin(d*x+c))^(3/2)+4*arctanh(1/2*cos(d*x+c
)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-4*cos(d*x+c)/a^2/d/(a+a*sin(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {2939, 2758, 2728, 212} \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {4 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{a^{5/2} d}-\frac {4 \cos (c+d x)}{a^2 d \sqrt {a \sin (c+d x)+a}}-\frac {2 \cos ^5(c+d x)}{5 d (a \sin (c+d x)+a)^{5/2}}-\frac {2 \cos ^3(c+d x)}{3 a d (a \sin (c+d x)+a)^{3/2}} \]

[In]

Int[(Cos[c + d*x]^4*Sin[c + d*x])/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(4*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(a^(5/2)*d) - (2*Cos[c + d*x]^5
)/(5*d*(a + a*Sin[c + d*x])^(5/2)) - (2*Cos[c + d*x]^3)/(3*a*d*(a + a*Sin[c + d*x])^(3/2)) - (4*Cos[c + d*x])/
(a^2*d*Sqrt[a + a*Sin[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2758

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Dist[g^2*((p - 1)/(a*(m + p))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p,
 0] && IntegersQ[2*m, 2*p]

Rule 2939

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(-d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x
] + Dist[(a*d*m + b*c*(m + p + 1))/(b*(m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m, x], x] /; F
reeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[m + p + 1, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \cos ^5(c+d x)}{5 d (a+a \sin (c+d x))^{5/2}}-\int \frac {\cos ^4(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx \\ & = -\frac {2 \cos ^5(c+d x)}{5 d (a+a \sin (c+d x))^{5/2}}-\frac {2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}-\frac {2 \int \frac {\cos ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx}{a} \\ & = -\frac {2 \cos ^5(c+d x)}{5 d (a+a \sin (c+d x))^{5/2}}-\frac {2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}-\frac {4 \cos (c+d x)}{a^2 d \sqrt {a+a \sin (c+d x)}}-\frac {4 \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx}{a^2} \\ & = -\frac {2 \cos ^5(c+d x)}{5 d (a+a \sin (c+d x))^{5/2}}-\frac {2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}-\frac {4 \cos (c+d x)}{a^2 d \sqrt {a+a \sin (c+d x)}}+\frac {8 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^2 d} \\ & = \frac {4 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{a^{5/2} d}-\frac {2 \cos ^5(c+d x)}{5 d (a+a \sin (c+d x))^{5/2}}-\frac {2 \cos ^3(c+d x)}{3 a d (a+a \sin (c+d x))^{3/2}}-\frac {4 \cos (c+d x)}{a^2 d \sqrt {a+a \sin (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.99 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.29 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {\sqrt {a (1+\sin (c+d x))} \left ((240+240 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \sec \left (\frac {d x}{4}\right ) \left (\cos \left (\frac {1}{4} (2 c+d x)\right )-\sin \left (\frac {1}{4} (2 c+d x)\right )\right )\right )-180 \cos \left (\frac {1}{2} (c+d x)\right )+25 \cos \left (\frac {3}{2} (c+d x)\right )+3 \cos \left (\frac {5}{2} (c+d x)\right )+180 \sin \left (\frac {1}{2} (c+d x)\right )+25 \sin \left (\frac {3}{2} (c+d x)\right )-3 \sin \left (\frac {5}{2} (c+d x)\right )\right )}{30 a^3 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )} \]

[In]

Integrate[(Cos[c + d*x]^4*Sin[c + d*x])/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(Sqrt[a*(1 + Sin[c + d*x])]*((240 + 240*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*Sec[(d*x)/4]*(Cos[(2*c +
d*x)/4] - Sin[(2*c + d*x)/4])] - 180*Cos[(c + d*x)/2] + 25*Cos[(3*(c + d*x))/2] + 3*Cos[(5*(c + d*x))/2] + 180
*Sin[(c + d*x)/2] + 25*Sin[(3*(c + d*x))/2] - 3*Sin[(5*(c + d*x))/2]))/(30*a^3*d*(Cos[(c + d*x)/2] + Sin[(c +
d*x)/2]))

Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.95

method result size
default \(\frac {2 \left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (30 a^{\frac {5}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )-3 \left (a -a \sin \left (d x +c \right )\right )^{\frac {5}{2}}-5 a \left (a -a \sin \left (d x +c \right )\right )^{\frac {3}{2}}-30 a^{2} \sqrt {a -a \sin \left (d x +c \right )}\right )}{15 a^{5} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(130\)

[In]

int(cos(d*x+c)^4*sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/15*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(30*a^(5/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a
^(1/2))-3*(a-a*sin(d*x+c))^(5/2)-5*a*(a-a*sin(d*x+c))^(3/2)-30*a^2*(a-a*sin(d*x+c))^(1/2))/a^5/cos(d*x+c)/(a+a
*sin(d*x+c))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 239 vs. \(2 (118) = 236\).

Time = 0.28 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.74 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {2 \, {\left (\frac {15 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a \sin \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} + {\left (3 \, \cos \left (d x + c\right )^{3} + 14 \, \cos \left (d x + c\right )^{2} - {\left (3 \, \cos \left (d x + c\right )^{2} - 11 \, \cos \left (d x + c\right ) - 52\right )} \sin \left (d x + c\right ) - 41 \, \cos \left (d x + c\right ) - 52\right )} \sqrt {a \sin \left (d x + c\right ) + a}\right )}}{15 \, {\left (a^{3} d \cos \left (d x + c\right ) + a^{3} d \sin \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

2/15*(15*sqrt(2)*(a*cos(d*x + c) + a*sin(d*x + c) + a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c)
+ 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x
+ c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))/sqrt(a) + (3*cos(d*x + c)^3 + 14*cos(d*x + c)^2
- (3*cos(d*x + c)^2 - 11*cos(d*x + c) - 52)*sin(d*x + c) - 41*cos(d*x + c) - 52)*sqrt(a*sin(d*x + c) + a))/(a^
3*d*cos(d*x + c) + a^3*d*sin(d*x + c) + a^3*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*sin(d*x+c)/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4} \sin \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^4*sin(d*x + c)/(a*sin(d*x + c) + a)^(5/2), x)

Giac [A] (verification not implemented)

none

Time = 0.42 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.19 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=-\frac {2 \, {\left (\frac {15 \, \sqrt {2} \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{\frac {5}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {15 \, \sqrt {2} \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{\frac {5}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, \sqrt {2} {\left (6 \, a^{\frac {25}{2}} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 5 \, a^{\frac {25}{2}} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, a^{\frac {25}{2}} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{15} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{15 \, d} \]

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-2/15*(15*sqrt(2)*log(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^(5/2)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 15*s
qrt(2)*log(-sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^(5/2)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 2*sqrt(2)*(6*a
^(25/2)*sin(-1/4*pi + 1/2*d*x + 1/2*c)^5 + 5*a^(25/2)*sin(-1/4*pi + 1/2*d*x + 1/2*c)^3 + 15*a^(25/2)*sin(-1/4*
pi + 1/2*d*x + 1/2*c))/(a^15*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4\,\sin \left (c+d\,x\right )}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((cos(c + d*x)^4*sin(c + d*x))/(a + a*sin(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)^4*sin(c + d*x))/(a + a*sin(c + d*x))^(5/2), x)